Extremal energies of trees with a given domination number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal values on Zagreb indices of trees with given distance k-domination number

Let [Formula: see text] be a graph. A set [Formula: see text] is a distance k-dominating set of G if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text], where k is a positive integer. The distance k-domination number [Formula: see text] of G is the minimum cardinality among all distance k-dominating sets of G. The first Zagreb index of G is defined as ...

متن کامل

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

Extremal Graphs With a Given Number of Perfect Matchings

Let f(n, p) denote the maximum number of edges in a graph having n vertices and exactly p perfect matchings. For fixed p, Dudek and Schmitt showed that f(n, p) = n2/4 + cp for some constant cp when n is at least some constant np. For p ≤ 6, they also determined cp and np. For fixed p, we show that the extremal graphs for all n are determined by those with O( √ p) vertices. As a corollary, a com...

متن کامل

Extremal Problems for Game Domination Number

In the domination game on a graph G, two players called Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated; the game ends when the chosen set becomes a dominating set of G. Dominator aims to minimize the size of the resulting dominating set, while Staller aims to maximize it. When both players play optimally, the si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.09.008